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Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing
work in this area has focused on considering the effect of underlying network structure on epidemic dynamics
by using tools from probability theory and computer simulation. This work has provided much insight on the
role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important
understanding afforded by the probability and simulation paradigm, this approach does not directly address
important questions about the structure of contact networks such as what is the best network model for a
particular mode of disease transmission, how parameter values of a given model should be estimated, or how
precisely the data allow us to estimate these parameter values. We argue that these questions are best
answered within a statistical framework and discuss the role of statistical inference in estimating contact
networks from epidemiological data.

© 2011 Elsevier B.V. All rights reserved.

Introduction

It is not surprising that networks have been used to model the
spread of infectious disease for over 50 years (Bailey, 1957; Dietz,
1967; Frisch & Hammersley, 1963). A network represents individuals
in a host population as nodes and the interactions among them that
may lead to the transmission of disease as edges. The related ideas
that a disease can spread from one individual to another via contact
and that an individual can only have a limited number of contacts
naturally lend themselves to this abstraction. With the increasing
availability of data, computational power, and methodological
advancement in the last two decades, the approaches of network
theory have been increasingly sought for epidemiological modeling of
human (Eubank et al., 2004; Meyers et al., 2005; Bansal et al., 2006),
livestock (Kao et al., 2008; Kiss et al., 2006), and wildlife (Craft et al.,
2009; Perkins et al., 2009; Hamede et al., 2009) disease systems.

The network-based studies to date have largely focused on the
impact of network structure on disease dynamics and the effect of
control strategies. Network structure has largely been determined by
collecting host data to inform probabilistic models of host interac-
tions, which are then used to generate simulated networks over
which disease spread can be studied. It is not clear that this method
leads to accurate models for prediction or that the collected data and
constructed models are always of relevance to the disease of interest.
An alternative strategy is to statistically infer contact network models
using all available host and disease data, including time series of

incidence, known transmission chains or genetic pathogen sequences.
This statistical approach, which has received relatively little attention,
involves three stages ((Gelman et al., 2004), chapter 1): specifying a
probability model; fitting the model to observed data by using
likelihood techniques to estimate model parameters and associated
error; and evaluating the model fit, typically by simulation from the
fitted model. While this alternative still allows the generation of
networks that may be used to study disease spread, it alone provides
additional insight about the level of information provided by the data
regarding the particular choice of the generation method itself. In
other words, while a wholly simulation-based approach is valuable
and may inform the development of scientific hypotheses, only the
statistical inferential approach allows us to test these hypotheses
using data. As such, we argue that a statistical inferential framework
has great scientific value for epidemiological network modeling.

The remainder of the paper is organized as follows. The section on
Contact networks and transmission trees defines these crucial yet
difficult terms. In the section on Statistical approaches to modeling
networks, we look at the role that explicit statistical models and
inference can play in studying contact networks. The section on
Inferring contact networks from data reviews how direct network
data are gathered, provides an example of how such data may be used
in the statistical framework and discusses how other forms of data
(specifically, epidemiological and genetic data) can be integrated into
this framework. The discussion gives future directions for this work.
We emphasize that this paper focuses on the role of statistical
inference in estimating contact networks from epidemiological data.
As such, we touch on a wide range of well-studied topics in
epidemiology and network theory without treating them fully. Topics
not covered include network sampling strategies (Morris, 2004),
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missing data (Burt, 1987; Kossinets, 2006; Handcock & Gile, 2010),
spatial models (Ferguson et al., 2001; Chis Ster et al., 2009; Jewell
et al., 2009) and the statistical estimation of epidemic parameters (in
the absence of network parameters) from data (Bolker, 2008; Chowell
et al., 2009; Bailey, 1975; Gibson, 1997; Streftaris & Gibson, 2004a;
Streftaris & Gibson, 2004b; O'Neill, 2002).

Contact networks and transmission trees

The dominant models of mathematical epidemiology for the last
century have been differential equation-based and entail the implicit
assumption that all individuals (or groups of similar individuals) are
equally likely to contact each other. These homogeneous mixing
models have been used with a history of success in studying many
aspects of disease dynamics (Anderson & May, 1991), yet they often
fail to accurately capture population-level dynamics shaped by
individual-level heterogeneities (Hethcote et al., 1984; Meyers et al.,
2005; Bansal et al., 2007). Network-based models provide an elegant
alternative to homogeneous-mixing models by intuitively capturing
diversity in the underlying patterns of interaction in a population.

We do not consider here models that extend homogeneous mixing
models by including population structure such as age stratification or
spatial heterogeneity without specifying an explicit contact network.
While there is a considerable body of work fitting these non-network
models and there are analogous network models allowing for these
structural or spatial features, explicit network models present
different statistical challenges from those encountered with non-
network spatial or structured population models.

Defining contact networks

A contact network is a network (or graph) in which nodes (or
vertices) represent individual hosts and the edges (or ties) connecting
pairs of nodes represent potentially disease-causing contacts. This
definition is intentionally general; the notion of a contact varies with
the host, pathogen and transmission route in question. Where
transmission of one infection might require sexual intercourse
between two individuals, another might require nothing more than
physical proximity. We assume here that the drivers of transmission
for a particular disease are well-understood, an important consider-
ation since this determines whether a contact can be well-defined.
Examples of studied contact networks range from the spread of
syphilis among a heterosexual human population (Patrick et al., 2002)
to the spread of influenza in an urban area (Bansal et al., 2006), to the
spread of canine distemper virus among lions in the Serengeti (Craft
et al., 2009). These different modes of transmission necessitate very
different types of contact networks. Conversely, diseases that share a
mode of transmission in the same host population, and thus the same
notion of contact, would be expected to share a common contact
network.

We emphasize that a contact between two hosts, one infected and
one susceptible, does not imply that infection is transmitted. Thus, a
contact network necessarily includes any edges that result in a
transmission but may also include edges that do not. Furthermore, we
assume that the contact network is blind to the disease status of any of
its individuals; here, we do not consider the complication that
behavior may be influenced by disease status. Thus, the concept of a
contact, in the context of some disease, has meaning whether or not
the individuals involved are an infected/susceptible pair. Contact
networks can also be defined at scales other than that of an individual.
For example, in the context of a livestock disease, a network node
might logically be defined as an entire farm (Kao, 2002), while large-
scale disease dynamics might be studied with a network of cities as
nodes, connected by themovement of individuals between them (e.g.,
(Colizza et al., 2006)).

Perhaps the most obvious objection to our notion of contact
network is that the network is static; that is, an edge between two
nodes is either always present or absent and that temporal features
such as duration, order or frequency are not accounted for. In contrast,
in most human and animal diseases, contacts between individuals are
fleeting, constantly formed and broken. Ideally, a model of the contact
network would explicitly account for this evolution through time
within a dynamic network model such as those discussed in Snijders
and Doreian (2010) and Bansal et al. (2010) and references therein.
Yet a static network is a natural place to begin model specification,
and generalization to dynamic networks may turn out to be
straightforward in some cases; when it is not, it may require
additional theory or more nuanced data, as discussed by Krivitsky
(2009). We focus on static models for the rest of this work.

Defining transmission networks

A contact network describes the set of contacts via which infection is
possible but does not give information on contacts that lead to successful
transmission of disease.When a pathogen is introduced into a population
and an outbreak occurs, the pathogen follows a path on the contact
network as it spreads from node to node, traversing some edges and not
others. This path is directed since each transmission must occur from an
infected individual to an uninfected one. This path is itself a network,
called a transmission network, and is defined on the same set of nodes as
the contactnetworkbut forwhichadirectededgeoccurs fromAtoB if and
only if A and B share an edge in the contact network and A transmits
disease to B. Thus, the transmission network is a subgraph of the contact
network. Furthermore, for many diseases, it can be assumed that every
individual may be infected only once and by exactly one other individual
within a single epidemic, so the transmission network is a tree, i.e., a
network without cycles. We illustrate the distinction between a contact
network and a transmission network in Fig. 1.

Statistical approaches to modeling networks

Models are used widely in the study of networks and are not the
sole preserve of a statistical approach. All studies involving repeated
stochastic simulation of networks must choose some model for these
networks. Sometimes this choice is explicit, while other times it is
implicit. For instance, a “random network” model (which is more
accurately called a uniform random network model), in which each
possible network is equally likely, is an explicit choice. It attaches a
closed-form probability to each possible network. On the other hand,
while a network-simulationmethod based on preferential attachment
as in Barabasi and Albert (1999) imposes a probability model on the
set of all possible networks, this model is implicitly defined through
the stochastic rules for constructing the network edge by edge rather
than explicitly specified. Similarly, large agent-based simulations such
as those of Eubank et al. (2004), Barrett et al. (2008) and Ferguson
et al. (2005) impose implicit probability models on the space of
possible networks, but the complexity of these models often prevents
explicit description, let alone statistical inference.

The distinction between the simulation or probability paradigm
and the statistical paradigm is summarized by the description of
statistics as “probability in reverse.” To wit, where probability or
simulation studies start with parameters and a model and describe
howdatawill behave, statistical inference startswith data and amodel
and describes what can be said about the parameters. The relationship
between the two approaches is further illustrated in Fig. 2.

While complete knowledge of a specific contact network associ-
ated with a particular population might be interesting, we stress that
discovery of this single network is not our aim. Rather, we seek a
simplified description—a model—of a stochastic process that could
realistically have resulted in this network. Indeed, for many scientific
purposes, knowing a model for a contact network is more useful than

39D. Welch et al. / Epidemics 3 (2011) 38–45



knowing the specific contact network itself, since the former is useful
to study general behavior across an ensemble of similar contact
networks,whereas the latter is not. Furthermore, the goal is notmerely
to estimate a single model for simulating networks but also to know
how precise the model estimate is given the data; such information is
completely absent even in the case of a perfectly observed true contact
network. Of course, perfect data on a network may be exploited in
statistical inference; an enormous literature in social networks
describes exactly this process. (See Box 1 and articles such as Robins
et al. (2006), Goldenberg et al. (2009), and the references therein.)

In the statistical paradigm, we also attempt to quantify the
uncertainty inherent in using incomplete data to choose a model.
Although either paradigm can be used to simulate contact networks on
which to study the spread of disease, only the former leads to ameasure
of the information contained in the data about the specificitywithwhich
we may claim to understand how contact networks are generated.
Furthermore, in statistics, the parameters we associate with features of
the model allow us to learn about various aspects of the network-
generating mechanism. That is, the models are descriptive rather than
merely predictive. While it is possible to reduce data through the use of

Fig. 1. (a) A network of contacts (undirected), (b) the (directed) transmission network that could result from an epidemic and (c) the phylogenetic tree corresponding to the
transmission network.

Fig. 2. θ is a set of parameters that determine a distribution over all possible contact networks. A particular contact network is drawn from this distribution. Network data, such as
degrees of sampled nodes, may be observed directly. An epidemic on the network results in epidemic data, indicated by the red arrow. Examples are prevalence time series and
pathogen genetic sequences. This forward process is described by a probability model andmay be simulated. Statistical inference (blue arrows) seeks to take the data and reverse the
process to estimate θ. Inference may be based on network data (mid-blue arrow, see section on Inference about contact networks from contact data), or epidemic data (light blue,
section on Inference about contact networks from disease data). A combined approach (dark blue) that uses all available data to estimate network parameters, as discussed in the
section on Integrating multiple sources of data to infer networks.
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descriptive summary statistics, it is only through a model and its
associated parameter estimates that we may summarize the random
behavior of a complex system such as a contact network. Andwhile it is
likely that certain problems will forever remain beyond the scope of
inferential methods (e.g., large agent-based simulation models), there
have been recent advances in statistical methodology that show some
promise. We discuss these advances in the next section.

Inferring contact networks from data

Data collection for contact networks

Because contact networks are defined in terms of individuals in a
population and encode every contact among the individuals that is

relevant to the infection in question, collecting data to determine
complete contact networks can be a herculean task. In addition, issues
of privacy, misreporting and sampling biases can complicate the task
(Keeling & Eames, 2005). Despite these drawbacks, some techniques
are used to gather data about the host population and contact
network in the absence of disease.

Methods for sampling contact network data in the absence of
disease can be broadly classified as either direct or indirect. We
outline some of the main techniques below.

Direct techniques, primarily used for humans only, such as diary-
based studies or device-based studies focus on collecting explicit
information on contact behavior among individuals that is relevant to
the disease in question. In diary-based studies, a population sample is
selected to record contacts as they occur (Keeling & Eames, 2005).

Box 1
An example of inference from an observed network.

Suppose that we observe the network shown in Fig. 3 and we wish to fit a class of models to it. Our example network describes the social
relationships between students in grades 7 through 12 at a large school community in the southern United States. Specifically, each edge
represents a self-reported mutual friendship between two individuals. Although it is not an epidemiological contact network strictly
speaking, we consider social relationships here to be a proxy for disease-causing contact for the purposes of illustration. Here, we illustrate
a method of statistical network fitting that is well-known in the social networks literature and that could be applied to the study of contact
networks in cases where they might be observed. Recall that, in such cases, the specific observed contact network is not of as much
interest as a useful model that might realistically have given rise to the specific network.
This network is based on data collected in theAddHealth study of Resnick et al. (1997). For reasons of confidentiality, the network depicted is
not the original network but rather a version simulated froma statisticalmodel basedon the real network. (See the documentation on the faux.
magnolia.high network in the ergm package (Handcock et al., 2010) for the R computing environment (R Development Core Team, 2009) for
more details on this network data set.) We illustrate the use of exponential-family random graphmodels (ERGMs) to fit this network data set
(Robins et al., 2006). The model we fit, which is discussed along with other models for the same dataset in Section 5 of Goodreau et al.
(2008), assumes a model in which each possible pair of nodes, say i and j, has an edge (a mutual friendship) with probability Pij, where

log
pij

1−pij

 !

= β1 + β2I i and j are in the same gradef g

+ β3I i and j are of the same racef g
+ β4I i and j are of the same sexf g:

In the expression above, I{} is an indicator function, i.e., it equals 1 if the argument is true and 0 otherwise. In this model, each edge is
independent of all others, so that the probability that a random network (denoted Y) equals a given fixed network (denoted y) may be
expressed as

P Y = yð Þ = κ exp β1E yð Þ + β2G yð Þ + β3R yð Þ + β4S yð Þf g; ð1Þ

where E(y) is the total number of edges in y and G(y), R(y), and S(y) are the number of edges in y between nodes of the same grade, race,
and sex, respectively. In Eq. (1), the κ is a normalizing constant (a function of the βi but not y) that ensures that Eq. (1) defines a legitimate
probability distribution.
We may estimate the parameters in model (1) using the method of maximum likelihood, whereby we search for the values of β1,…,β4 that
maximize Eq. (1) given y is the observed network data. These maximizers, which we denote by the vector β ̂, serve as the maximum
likelihood estimators of the true parameters, which we denote by the vector β0 and which is typically unknown. In our example, plugging in
the observed values E(y)=974, G(y)=820, R(y)=787, and S(y)=689, we may obtain the following estimates (with use of the ergm
package for R):

From an epidemiological point of view, these results tell us, for example, that the grade, race, and sex of an individual are all important in
determining his or her patterns of contacts on average; in particular, we estimate that individuals are from exp{0.88}=2.4 (in the case of
sex) to exp{3.23}=25.3 (in the case of grade) times more likely to associate with other individuals of the same category. This information
might help us to formulate an intervention strategy if an individual were to become infected. Note that approximate standard error
estimates are also calculated along with the β estimates themselves, which allows for (say) standard hypothesis tests and confidence
intervals.

Estimate Std. error p-Value

β1 (edges) −10.01277 0.11526 b1e-04
β2 (nodematch.Grade) 3.23105 0.08788 b1e-04
β3 (nodematch.Race) 1.19646 0.08147 b1e-04
β4 (nodematch.Sex) 0.88438 0.07057 b1e-04
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Definitions of contact vary in these studies: in the context of infection
that can spread by respiratory droplets, an in-person two-way
conversation of more than two words has been used (Mossong et al.,
2008; Wallinga et al., 2006; Edmunds et al., 1997; Read et al., 2008),
while sexual intercourse has been used in the context of sexually-
transmitted diseases (Ghani & Garnett, 1998; Ghani & Garnett, 2000).

Device-based studies rely on the use of electronic recording devices,
usually to measure proximity among individuals, as a proxy for contact
for the spread of airborne or respiratory droplet infections. RFID tags
(Barrat et al., 2008), animal ear tags (Kao et al., 2008), and cellular
phones (Gonzalez et al., 2008) have all been employed in these studies.

Diary-based and device-based studies allow for detailed data
collection on individuals, but they may be limited in their spatial and
temporal scope. In addition, the epidemiological relevance of the
measured contact must be carefully understood in these studies. Other
sourcesof host data are lessdirect and involve theuseof data collectedon
general human or animal behavior. Examples of this include transpor-
tation data (Eubank et al., 2004; Colizza et al., 2006); census data on
population age and household size distributions; and data on school
attendance, employment or hospital occupancy (Meyers et al., 2005;
Eubank et al., 2004; Halloran et al., 2002), social structure or mating
behaviors (Craft et al., 2009; Hamede et al., 2009). These independent
data can guide us about individual behavior and allow us to consider
disease spread at larger spatio-temporal scales but may not alone be
specific enough for reconstructing individual-level contact networks.

Inference about contact networks from contact data

As illustrated in Fig. 2, network data of the form described above,
can be fit to a specified probability model to attain model parameters
and estimates of model fit. In Box 1, we provide a simple example of

inference of a network model from observed contact data. The
statistical inferential procedure we have employed in this example
gives not only an estimate of the parameter β0 and a sense of how
precise this estimate is but also a natural way to obtain new, randomly
generated networks and to check the model itself. The former is
accomplished because we now have an explicit probability model on
the space of possible networks, whereas the latter may be accom-
plished by simulating repeatedly from the model and then using
descriptive statistics to compare the simulated networks with the
original network to determine whether the observed network
appears unusual relative to the population of networks implied by
the fitted model. For details on this model-checking procedure, see
Hunter et al. (2008). This inherent model-checking capability is a
major advantage of the statistical approach, as is the fact that
formulating a model forces one to be explicit about the assumptions
made about the random network-generating process.

Inference about contact networks from disease data

Given the tenets of the statistical approach, it is natural to ask what
can be said about the parameters governing an underlying contact
network by observing the progress of an epidemic. From disease data
(e.g., event times), something can be said about who was likely to
have infectedwhom,which is the information needed to construct the
transmission network, and in turn infer something about the contact
network. Finally, given a contact network, an estimate of the
parameters of the network model can be made. The relationship
between each of these levels of information can be codified in a
likelihood. However, much of the technical difficultly of this problem
lies in the fact that, to calculate the likelihood of the data for any given

Fig. 3. A network of mutual friendship relationships among 1461 junior-high- and high-school students in the southern United States. Isolates (nodes of degree zero) are not shown
here. Nodes are colored according to grade level and shaped according to sex (triangles are male and circles are female).
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parameter values, it is necessary to include, as auxiliary variables, the
transmission network and the contact network itself.

One paper that addresses the network problem is Britton and
O'Neill (2002), which demonstrates that the parameters of a network
model can be estimated given infection and/or recovery times of
individual hosts. The paper describes a Bernoulli, or Gilbert-Erdős-
Rényi, model for the contact network in which any pair of nodes is
connected with probability, p, independently of all other node pairs
(Gilbert, 1959). An SIR epidemic process with exponential waiting
times is assumed over the contact network with transmission rate β
and recovery rate γ. The three parameters p, β and γ are estimated for
various small data sets by the authors using Markov chain Monte
Carlo (MCMC) methods. We emphasize that no direct observation of
any part of the contact network is utilized in the estimation process
employed. Their results indicate that all these parameters can be
simultaneously estimated, although there exists a strong correlation
between the network parameter p and the transmission parameter β
in some parts of the parameter space. This correlation is such that the
product pβ can always be estimated but the individual factors may be
unidentifiable, making it difficult to distinguish between a mildly
transmissible disease (low β) on a highly connected network (high p)
from a highly transmissible infection (high β) on a sparse network
(low p).

Others have built on the model and methodology of Britton and
O'Neill (2002). Neal and Roberts (2005) focus on the statistical
methodology of the problem, introducing potential computational
efficiencies to theMCMCmethod. Ray andMarzouk (2008) extend the
graph model so that sub-populations may have varying degrees of
contact with each other, extend the epidemic model to include a
latent period (making it a susceptible–exposed–infected–recovered,
or SEIR, model), and use gamma-distributed latent and infectious
periods. From a modeling perspective, these are both useful exten-
sions, but the authors have some difficulties fitting this extended
model to data. A more successful approach has recently been
demonstrated by Groendyke et al. (2010), who also investigate the
identifiability of the contact parameter p and transmission parameter
β and show that for a significant portion of the (realistic) parameter
space these parameters are indeed identifiable.

In fitting a compartmental model with stochastic dynamics (Ball
et al., 1997; Anderson & May, 1991), Demiris and O'Neill (2005)
impute a type of transmission network in order to aid the likelihood
calculation for their model. The model they consider is of a population
divided into households where individuals in the same household
transmit disease to one another at a higher rate than individuals in
different households. The imputed network is a directed network
containing all contacts made by an individual during its infectious
period. This network is clearly more general than a transmission
network—it contains many possible transmission networks—but is
not quite as general as a contact network in the sense that we are
using that term. It could perhaps be thought of as an emergent
network of the disease as described by Keeling and Eames (2005),
where the underlying population is panmictic yet when contacts are
recorded over a short period of time we see a relatively sparse
network structure emerge. The network itself is not the object of
interest in this problem but instead is a nuisance parameter which
must be dealt with so that the contact rates within and between
groups can be calculated.

The papers discussed here all suffer to some extent from a paucity
of data relative to the number of unknown variables in the respective
models. Britton and O'Neill (2002) and related papers rely on a
limited number of event times (it is highly unusual to have all
infection and recovery times) while Demiris and O'Neill (2005) are
based on having final outcome data for an epidemic (which is, again,
unusual to have in a complete form in practice). At best in the Britton
and O'Neill (2002) case, there are 2N data points required (i.e., the
infection and recovery times for all N hosts in a population), yet the

number of variables is 3+N(N−1) /2 (i.e., the model parameters, β,
γ and p, and N(N−1)/2 possible network edges that are considered
latent variables here). Even when the presence or absence of a
particular edge in the network is not of interest, it is necessary to
include these extra variables so that the likelihood can be calculated.
An obvious solution to this rapid growth in the number of unknowns
is to narrow down the space of plausible networks by bringing
additional data to bear on the problem. We discuss this next with
particular reference to genetic and host data.

Integrating multiple sources of data to infer networks

Genetic sequences taken from pathogens are potentially informa-
tive about the transmission network, especially where the pathogen is
a rapidly evolving RNA virus (Pybus & Rambaut, 2009). Although
epidemiological data may provide information on who was infected,
when, and how long, it cannot provide positive information on who
acquired infection from whom. Comparison of pathogen sequences
taken from different hosts makes it possible to infer the most likely
infector for a given infectee, providing an additional constraint on the
space of possible transmission trees. Typically, genetic sequences are
treated within the framework of phylogenetic analyses.

There exist two clear analogies between epidemiological models
and phylogenetic models. First, if genetic samples are taken from
pathogens, the related phylogenetic tree contains much of the same
information as the associated transmission network for those
pathogens; see Fig. 1. The phylogenetic tree shows the time of the
most recent common ancestor for any subset of sampled sequences.
The extra information that a transmission tree displays is the direction
of transmission at each ancestral node in the phylogenetic tree.
Studies such as Cottam et al. (2008), which combines epidemiological
and genetic data to infer transmission trees from the 2001 UK foot and
mouth disease outbreak, and Lewis et al. (2008), which uses a
Bayesian approach to reconstruct transmission networks of HIV
patients from London, show that genetic data can greatly aid in the
process of reconstructing transmission networks.

Second, basic population genetic models assume a panmictic
population but, as in epidemiology, the panmictic assumption has
been extended to a structured population with a constant rate of
contact/migration among the sub-populations (Donnelly & Tavare,
1995). Recently, more complex models of population structure have
emerged in population genetics, somewith a distinctly network flavor
(Lemey et al., 2009). Applications of phylogenetics to epidemiology
have informed estimates of the prevalence, rates of spread, and time
of origination of various epidemics and provided useful information
about the evolution of pathogens (Goodreau, 2006; Holmes &
Grenfell, 2009). Similarly, the introduction of genetic data to network
models should improve the estimation of transmission networks and,
therefore, of contact networks.

Data sources directly relating to the host population and
individuals, discussed in the section on Data collection for contact
networks could also be used to inform these models along with
epidemiological data (discussed in the section on Inference about
contact networks from disease data). Census data, location data and
host covariates—age, occupation, socio-economic status—should not
be treated separately from epidemiological data but should play an
important role in defining and constraining the underlying contact
network model. This could be achieved via direct inclusion of these
data in the estimation process or, within a Bayesian framework, by
constructing informative priors that take these data into account.
Although limited in its size, one study that successfully makes use of
host data, epidemiological data, and molecular data is that of Spada
et al. (2004). The authors use a minimum spanning tree approach on
molecular data, combined with information about the contact
patterns of the hosts (e.g. colocation of patients within hospital
wards), to reconstruct a transmission tree for a hepatitis C outbreak.
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Discussion

Epidemiology has much to gain from the use of networks, from a
deeper understanding of the impact of heterogeneities on the ecology
and evolution of host–pathogen systems, to the exploitation of
network processes for the design of efficient intervention strategies.
Any of these goals require the use of accurate network models which
should be informed by as much of the data as possible. In this article,
we have argued that most of the existing work in network
epidemiology has focused heavily on the probabilistic question of
what influence specific network structure may have on disease
dynamics. This work is valuable in many respects including
identifying forms of heterogeneity that may aid or impede epidemics,
designing epidemic models that capture observed dynamics, and
assessing the impact of control strategies. We argue further that to
gain a full understanding of the structure of contact networks and of
the network characteristics which influence the outcome of an
epidemic, a statistical approach should be taken when possible. This
involves starting with all available data—those from one or more
observed epidemics and those relating to the contact process—and
then fitting as much of the data as possible to a model to produce
parameter estimates and, crucially, estimates of the associated errors.

In the section on Statistical approaches to modeling networks, we
explained how diverse data could be treated within a statistical
framework. In the section on Data collection for contact networks we
discussed a wide range of data sources regarding host behaviors that
may generate contact networks and demonstrated statistical infer-
ence on such data with an example. The challenge of introducing
epidemic data into this framework has been broached by some
preliminary studies as discussed in the section on Inference about
contact networks from disease data. While this work is promising, the
existingmodels are relatively simplistic and do not take full advantage
of all available data. This can be explained partially by the fact that
dealing with even one type of data is difficult, can be computationally
challenging and may require certain simplifying assumptions that are
less appropriate for other forms of data. While it is reasonable that
novel methods might only work with a particular type of data, to
become more broadly useful, there is a need for models that
incorporate as much available information as possible.

A larger problem is that we typically require complete data to
make estimates of network parameters. This is partly due to the
structure of networkmodels; when nodes interact in a heterogeneous
manner, it may be necessary tomodel the behaviors of each individual
node and, thus, the entire network. Under current methods, the
properties of any nodes that are not observed but may have played a
role in the spread of the infection need to be imputed. This rapidly
leads to an explosion in the number of unknown variables and
hobbles current methods. Thus, network models that work with
incomplete data (Handcock & Gile, 2010) and that do not require the
unobserved data to be imputed need to be further developed in the
context of contact networks for infectious disease epidemics.

If these technical problems can be overcome, we would expect to
see more accurate models informed by data leading to a deeper
understanding of host–pathogen systems and epidemiology general-
ly. Indeed, informing network models with epidemic data presents
intriguing possibilities in those cases beyond epidemiology where we
may be interested in the contact network itself or a larger social
network in which the contact network is embedded. For instance, we
may wish to study the social structure of a particular population, and
we merely use disease transmission data as means for learning about
this structure. While human populations and their social networks
can often be studied directly, the same does not apply to populations
of other species. In these cases, important information regarding
levels of contact among widely dispersed populations is of utmost
interest to researchers and could be further informed by studying the
contact networks associated with transmissible pathogens present

within the populations of interest. The epidemic here can be viewed
as a probe which passes through the population of interest and can
then be studied to examine features of the population itself.
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